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Abstract

A LANL paper says it provides an uncertainty analysis of subcritical
benchmark measurements using the Hage-Cifarelli moment’s formalism.
The goal of the LANL work is to provide uncertainties in the leakage and
total multiplication values for use in subcritical benchmark measurements.
Data of the bare BeRP ball taken September 17-20 2012 as part of exper-
iment IER-161 for the Department of Energy Nuclear Criticality Safety
Program are used as an example to determine the measured uncertainties
in leakage and total multiplication. The contribution of each parameter
to the total uncertainty is then examined.
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1 INTRODUCTION

A problematic feature of the LANL paper titled Uncertainty Analysis of Sub-
critical Benchmark Experiments Using the Hage-Cifarelli Formalism is noted in
the section “Uncertainties in the Singles and Doubles Counting Rates” at the
bottom of page 1:

“This work will concentrate on using the singles and doubles rates to
solve for neutron multiplication and spontaneous fission rate. The
estimation of these rates is performed by fitting the Feynman Y
parameter, or Y2, as a function of gate-width. Typically chi-squared
minimization is the method used for fitting the Feynman Y as a
function of amplitude and neutron diffusion lifetime. However, the
reduced chi-squared used during this fitting is typically not equal to
one. This means the data used for the fit does not follow a normal
distribution and hence many of the uncertainty evaluation methods
won’t work.”

Two paragraphs later, in the second paragraph on page 2, one of the above
issues is expanded on:

“In the examples presented in this paper, the minimum reduced chi-
squared values for the fits were on the order of 0.01 or less.”

Under fairly general conditions with the method of least-squares in the large
sample limit, the χ2 function takes on a Gaussian shape. The importance of the
Gaussian distribution stems from the central limit theorem which states that the
sum of n independent continuous random variables becomes a Gaussian random
variable in the limit of large n. The central limit theorem holds regardless of
the distribution functions of individual variables. This is the formal justification
for treating measurement errors as Gaussian random variables because the total
error is nearly always the sum of of a large number of small contributions.

Finding values of the diffusion lifetime λ−1 and the asymptote R2F that
minimize χ2 can be nontrivial because of the nonlinear nature of the fit. One
reliable method is to use the Nelder-Mead nonlinear optimization method. The
relationship between the true values and confidence regions for λ−1 and R2F

is nonetheless almost certainly not an ellipse as would be the case for a linear
two-parameter fit.

Another issue is that the number of degrees of freedom nDOF is not well
defined for any time interval construction where T is chosen in such a way that
neutrons used for one value of T get reused for another.

The simplest interpretation for values of χ2/nDOF ≪ 1 (i.e. “reduced chi-
squared” much less than 1) is that the uncertainties on Y2 for a given time
interval T are badly overestimated or, more likely, the covariance matrix between
different time intervals is incorrect.

Another open question is the size of the quantile Qγ that corresponds to a
particular confidence interval (e.g. one standard deviation) when the covariance
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matrix between the different time intervals T is not diagonal (i.e. neutrons have
been reused across different time gates).

Furthermore, if the “data used for the fit does not follow a normal distri-
bution,” then the Neyman construction for confidence intervals should be used.
Another issue arises in the construction and interpretation of confidence inter-
vals when a parameter can only take on values in a restricted range. As an
important example, consider the case where the mean of a Gaussian distributed
variable is constrained on physical grounds to be non-negative. In such cases,
one method has been suggested by Feldman and Cousins and applies an ordering
principle to the usual Neyman construction.

2 REVIEW

The jth combinatorial moment Mj(T ) of the multiplicity distribution bn(T ) is
just the jth factorial moment of bn(T ) divided by j!, or more simply

Mj(T ) =

∞∑
n=j

(
n
j

)
bn(T ) (1)

Furthermore, we define the following constants:

νµ =

∞∑
ν=µ

(
ν
µ

)
Cν (2)

which are the combinatorial moments of the neutron multiplicity distribution
for induced fission, and

νSµ =

∞∑
ν=µ

(
ν
µ

)
CSν (3)

which are the combinatorial moments of the neutron multiplicity distribution
for spontaneous fission.

As a practical matter, the combinatorial momentsMj(T ) of the multiplicity
distributions bn(T ) are easy to compute. The quantities Yj(T ) can be expressed
in terms of Mj as

Y1(T ) = M1(T ) (4)

Y2(T ) = M2(T )− [M1(T )]
2

2!
(5)

Y3(T ) = M3(T )− Y2(T )M1(T )− [M1(T )]
3

3!

= M3(T )−M2(T )M1(T ) +
[M1(T )]

3

3
(6)
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It is also well known that

Y1(T ) = R1T (7)

Y2(T ) = R2

(
T − 1− e−λT

λ

)
(8)

Y3(T ) = R3

(
T − 3− 4e−λT + e−2λT

2λ

)
(9)

By summing the contributions from fission chains initiated by both induced
and spontaneous fission, it is well known that

Rj = εj



FIMe + FSMeνS1 j = 1

FIM
2
e

Me − 1

ν − 1
ν2

+FSM
2
e

[
νS2 +

Me − 1

ν − 1
νS1 ν2

]
j = 2

FIM
3
e

Me − 1

ν − 1

[
ν3 + 2

Me − 1

ν − 1
ν2

2

]
+FSM

3
e

[
νS3 +

Me − 1

ν − 1
(νS1 ν3 + 2νS2 ν2)

+2

(
Me − 1

ν − 1

)2

νS1 ν2
2

]
j = 3

(10)

It is convenient to define the following:

Y2F(T ) =
Y2(T )

Y1(T )
(11)

R2F =
R2

R1
(12)

Y3F(T ) =
Y3(T )

Y1(T )
(13)

R3F =
R3

R1
(14)

Applying Eqs. 7, 8 and 9, the quantities normally used in the analysis are found
to be

Y2F(T ) = R2F

(
1− 1− e−λT

λT

)
(15)

Y3F(T ) = R3F

(
1− 3− 4e−λT + e−2λT

2λT

)
(16)

or, as expressed in terms of the combinatorial moments of the count distribu-
tions,

Y2F(T ) =
M2(T )

[M1(T )]
− [M1(T )]

2!
(17)

Y3F(T ) =
M3(T )

[M1(T )]
−M2(T ) +

[M1(T )]
2

3
(18)
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It is worth noting that

lim
λT→0

Y2F = 0 (19)

lim
λT→0

Y3F = 0 (20)

lim
λT→∞

Y2F = R2F (21)

lim
λT→∞

Y3F = R3F (22)

3 ERROR PROPAGATION

Let N be the number of time intervals of duration T which are examined, and let
Bn(T ) be the number of those time intervals in which n neutrons were detected.
So in other words, suppose that during the first time interval, six neutrons were
counted; B6 would be incremented by one. During the next time interval, say
eight neutrons were counted; B8 would be incremented by one, and so on for
all N time intervals. In this way, the count distribution Bn(T ) is built up. The
multiplicity distribution bn(T ) ≈ Bn(T )/N is just the probability of counting
n neutrons during a time interval of duration T , assuming N ≫ 1. The total
number of neutrons counted nTotal during all N time intervals is

nTotal =

∞∑
n=0

nBn (23)

The count distribution Bn(T ) is fundamentally a multinomial distribution:
For a given time interval of duration T , there are N independent observations
with B0 cases of zero neutrons counted, B1 cases of one neutron counted, B2

cases of two neutrons counted, and so on up to some Bnmax cases of nmax

neutrons counted. The total number of time intervals N is a fixed number
however with

N =

nmax∑
n=0

Bn (24)

The numbers for any two Bn(T ) are negatively correlated; if there are a greater-
than-average number of time intervals where a particular number n of neutrons
were counted, then the probability is increased that there are a fewer-than-
average number of time intervals where a different number m (m 6= n) of neu-
trons have been counted. In general, the covariance matrix for a multinomial
distribution is

Vmn =


−Nbmbn m 6= n

Nbn (1− bn) m = n

(25)
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where, again, bn ≈ Bn/N . This can easily be written in terms of the count
distributions as

Vmn =


−BmBn

N
m 6= n

Bn

(
1− Bn

N

)
m = n

(26)

Define the row vectors

D2F =
∂Y2F
∂Bn

(27)

D3F =
∂Y3F
∂Bn

(28)

where it can easily be shown that the elements of the row vectors are

∂Y2F
∂Bn

=

(
n
2

)
1

NM1(T )
− nY2F
NM1(T )

− n

N
(29)

∂Y3F
∂Bn

=

(
n
3

)
1

NM1(T )
−
(
n
2

)
1

N
+
nM1(T )

2N
− nY2F

N
− nY3F
NM1(T )

(30)

The variance on Y2F and Y3F for a given T would then be calculated in the usual
way as

σ2
Y2F

= D2F V DT
2F (31)

σ2
Y3F

= D3F V DT
3F (32)

where the superscript T in these two equations denotes transpose.
Values for λ and R2F are determined by minimizing the quantity

χ2 = E2F
T W−1 E2F (33)

where Wij is the covariance between time gates Ti and Tj and where the error
vector

E2F =
M2(Ti)

M1(Ti)
− M1(Ti)

2!
−R2F

(
1− 1− e−λTi

λTi

)
(34)

is constructed from Eqs. 17 and 15 and is understood to be a column vector
corresponding to different values for Ti.

The quantity R3F and a redundant value for λ are similarly determined by
minimizing the quantity

χ2 = E3F
T W−1 E3F (35)
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where

E3F =
M3(Ti)

M1(Ti)
−M2(Ti) +

[M1(Ti)]
2

3
−R3F

(
1− 3− 4e−λTi + e−2λTi

2λTi

)
(36)

The covariance matrix W depends on the structure of the time gates. W
depends on how the different values of T are chosen: if the same neutron counts
are used to populate count distributions with different values of T , W will not
be diagonal. In particular, if any of the neutrons are reused in multiple time
gates (different values of T ), then W can become very complex.

Because the χ2-fit can trace its lineage to the method of maximum likelihood,

χ2
(
θ̂ + σθ

)
= χ2

(
θ̂
)

+Qγ (37)

where θ̂ = (R̂2F, λ̂) is the vector of values that minimizes χ2 (e.g. Eq. 33) and
Qγ is the quantile which defines the confidence region.

χ2
1σ = E2F

T W−1 E2F −
[
χ2
(
R̂2F, λ̂

)
+Qγ

]
(38)

to determine R′2F and λ′. The statistical errors on R2F and λ were then com-
puted as

σR2F =
∣∣∣R′2F − R̂2F

∣∣∣ (39)

σλ =
∣∣∣λ′ − λ̂∣∣∣ (40)
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